Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 905
Filter
1.
Eur J Endocrinol ; 190(5): 347-353, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38652803

ABSTRACT

BACKGROUND AND OBJECTIVE: Apparent mineralocorticoid excess (AME) syndrome is an ultra-rare autosomal-recessive tubulopathy, caused by mutations in HSD11B2, leading to excessive activation of the kidney mineralocorticoid receptor, and characterized by early-onset low-renin hypertension, hypokalemia, and risk of chronic kidney disease (CKD). To date, most reports included few patients, and none described patients from Israel. We aimed to describe AME patients from Israel and to review the relevant literature. DESIGN: Retrospective cohort study. METHODS: Clinical, laboratory, and molecular data from patients' records were collected. RESULTS: Five patients presented at early childhood with normal estimated glomerular filtration rate (eGFR), while 2 patients presented during late childhood with CKD. Molecular analysis revealed 2 novel homozygous mutations in HSD11B2. All patients presented with severe hypertension and hypokalemia. While all patients developed nephrocalcinosis, only 1 showed hypercalciuria. All individuals were managed with potassium supplements, mineralocorticoid receptor antagonists, and various antihypertensive medications. One patient survived cardiac arrest secondary to severe hyperkalemia. At last follow-up, those 5 patients who presented early exhibited normal eGFR and near-normal blood pressure, but 2 have hypertension complications. The 2 patients who presented with CKD progressed to end-stage kidney disease (ESKD) necessitating dialysis and kidney transplantation. CONCLUSIONS: In this 11-year follow-up report of 2 Israeli families with AME, patients who presented early maintained long-term normal kidney function, while those who presented late progressed to ESKD. Nevertheless, despite early diagnosis and management, AME is commonly associated with serious complications of the disease or its treatment.


Subject(s)
Mineralocorticoid Excess Syndrome, Apparent , Humans , Israel/epidemiology , Male , Female , Mineralocorticoid Excess Syndrome, Apparent/genetics , Mineralocorticoid Excess Syndrome, Apparent/diagnosis , Retrospective Studies , Child , Child, Preschool , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , Adolescent , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy , Mutation , Hypertension/epidemiology , Hypokalemia , Adult
2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473937

ABSTRACT

Prenatal alcohol exposure (PAE) and prenatal stress (PS) are highly prevalent conditions known to affect fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis. The objectives of this study were to assess the effect of light PAE, PS, and PAE-PS interaction on fetal HPA axis activity assessed via placental and umbilical cord blood biomarkers. Participants of the ENRICH-2 cohort were recruited during the second trimester and classified into the PAE and unexposed control groups. PS was assessed by the Perceived Stress Scale. Placental tissue was collected promptly after delivery; gene and protein analysis for 11ß-HSD1, 11ß-HSD2, and pCRH were conducted by qPCR and ELISA, respectively. Umbilical cord blood was analyzed for cortisone and cortisol. Pearson correlation and multivariable linear regression examined the association of PAE and PS with HPA axis biomarkers. Mean alcohol consumption in the PAE group was ~2 drinks/week. Higher PS was observed in the PAE group (p < 0.01). In multivariable modeling, PS was associated with pCRH gene expression (ß = 0.006, p < 0.01), while PAE was associated with 11ß-HSD2 protein expression (ß = 0.56, p < 0.01). A significant alcohol-by-stress interaction was observed with respect to 11ß-HSD2 protein expression (p < 0.01). Results indicate that PAE and PS may independently and in combination affect fetal programming of the HPA axis.


Subject(s)
Fetal Diseases , Prenatal Exposure Delayed Effects , Psychological Tests , Self Report , Humans , Pregnancy , Female , Placenta/metabolism , Hypothalamo-Hypophyseal System/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2 , Stress, Psychological/metabolism , Prenatal Exposure Delayed Effects/metabolism , Pituitary-Adrenal System/metabolism , Fetal Development , Biomarkers/metabolism
3.
J Intern Med ; 295(1): 20-37, 2024 01.
Article in English | MEDLINE | ID: mdl-37941106

ABSTRACT

11-beta-hydroxysteroid dehydrogenases (11ß-HSDs) catalyse the conversion of active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inert 11-keto forms (cortisone, 11-dehydrocorticosterone). They were first reported in the body and brain 70 years ago, but only recently have they become of interest. 11ß-HSD2 is a dehydrogenase, potently inactivating glucocorticoids. In the kidney, 11ß-HSD2 generates the aldosterone-specificity of intrinsically non-selective mineralocorticoid receptors. 11ß-HSD2 also protects the developing foetal brain and body from premature glucocorticoid exposure, which otherwise engenders the programming of neuropsychiatric and cardio-metabolic disease risks. In the adult CNS, 11ß-HSD2 is confined to a part of the brain stem where it generates aldosterone-specific central control of salt appetite and perhaps blood pressure. 11ß-HSD1 is a reductase, amplifying active glucocorticoid levels within brain cells, notably in the cortex, hippocampus and amygdala, paralleling its metabolic functions in peripheral tissues. 11ß-HSD1 is elevated in the ageing rodent and, less certainly, human forebrain. Transgenic models show this rise contributes to age-related cognitive decline, at least in mice. 11ß-HSD1 inhibition robustly improves memory in healthy and pathological ageing rodent models and is showing initial promising results in phase II studies of healthy elderly people. Larger trials are needed to confirm and clarify the magnitude of effect and define target populations. The next decade will be crucial in determining how this tale ends - in new treatments or disappointment.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1 , Glucocorticoids , Humans , Mice , Animals , Aged , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Aldosterone , Brain/metabolism
4.
Int J Gynaecol Obstet ; 164(1): 40-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37318113

ABSTRACT

The relationship between events occurring during intrauterine development and later-life predisposition to long-term disease, has been described. The fetus responds to excess intrauterine exposure to high levels of corticosteroids, modifying their physiological development and stopping their growth. Fetal exposure to elevated levels of either endogenous (alterations in fetal hypothalamic-pituitary-adrenal axis) or synthetic corticosteroids, is one model of early-life adversity; to developing adult disease. At the molecular level, there are transcriptional changes in metabolic and growth pathways. Epigenetic mechanisms participate in transgenerational inheritance, not genomic. Exposures that change 11ß-hydroxysteroid dehydrogenase type 2 enzyme methylation status in the placenta can result in transcriptional repression of the gene, causing the fetus to be exposed to higher levels of cortisol. More precise diagnosis and management of antenatal corticosteroids for preterm birth, would potentially decrease the risk of long-term adverse outcomes. More studies are needed to understand the potential roles of factors to alter fetal corticosteroid exposure. Long-term infant follow-up is required to determine whether methylation changes in placenta may represent useful biomarkers of later disease risk. This review, summarize recent advances in the programming of fetal effects of corticosteroid exposure, the role of corticosteroids in epigenetic gene regulation of placental 11ß-hydroxysteroid dehydrogenase type 2 enzyme expression and transgenerational effects.


Subject(s)
Placenta , Premature Birth , Adult , Pregnancy , Female , Infant, Newborn , Humans , Placenta/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/pharmacology , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Premature Birth/chemically induced , Fetus , Glucocorticoids/adverse effects , Epigenesis, Genetic , Fetal Development/physiology
5.
Food Chem Toxicol ; 184: 114415, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141941

ABSTRACT

Chalcones from licorice and its related plants have many pharmacological effects. However, the effects of chalcones on the activity of human and rat 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2), and associated side effects remain unclear. The inhibition of 11 chalcones on human and rat 11ß-HSD2 were evaluated in microsomes and a 3D-quantitative structure-activity relationship (3D-QSAR) was analyzed. Screening revealed that bavachalcone, echinatin, isobavachalcone, isobavachromene, isoliquiritigenin, licochalcone A, and licochalcone B significantly inhibited human 11ß-HSD2 with IC50 values ranging from 15.62 (licochalcone A) to 38.33 (echinatin) µM. Screening showed that the above chemicals and 4-hydroxychalcone significantly inhibited rat 11ß-HSD2 with IC50 values ranging from 6.82 (isobavachalcone) to 72.26 (4-hydroxychalcone) µM. These chalcones acted as noncompetitive/mixed inhibitors for both enzymes. Comparative analysis revealed that inhibition of 11ß-HSD2 depended on the species. Most chemicals bind to the NAD+ binding site or both the NAD+ and substrate binding sites. Bivariate correlation analysis showed that lipophilicity and molecular weight determine inhibitory strength. Through our 3D-QSAR models, we identified that the hydrophobic region, hydrophobic aliphatic groups, and hydrogen bond acceptors are pivotal factors in inhibiting 11ß-HSD2. In conclusion, many chalcones inhibit human and rat 11ß-HSD2, possibly causing side effects and there is structure-dependent and species-dependent inhibition on 11ß-HSD2.


Subject(s)
Chalcones , Rats , Humans , Animals , Chalcones/pharmacology , 11-beta-Hydroxysteroid Dehydrogenases/metabolism , Quantitative Structure-Activity Relationship , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , NAD/metabolism
6.
Methods Enzymol ; 689: 167-200, 2023.
Article in English | MEDLINE | ID: mdl-37802570

ABSTRACT

11ß-Hydroxysteroid dehydrogenase type 2 (11ß-HSD2) converts active 11ß-hydroxyglucocorticoids to their inactive 11-keto forms, fine-tuning the activation of mineralocorticoid and glucocorticoid receptors. 11ß-HSD2 is expressed in mineralocorticoid target tissues such as renal distal tubules and cortical collecting ducts, and distal colon, but also in placenta where it acts as a barrier to reduce the amount of maternal glucocorticoids that reach the fetus. Disruption of 11ß-HSD2 activity by genetic defects or inhibitors causes the syndrome of apparent mineralocorticoid excess (AME), characterized by hypernatremia, hypokalemia and hypertension. Secondary hypertension due to 11ß-HSD2 inhibition has been observed upon consumption of excessive amounts of licorice and in patients treated with the azole fungicides posaconazole and itraconazole. Furthermore, inhibition of 11ß-HSD2 during pregnancy with elevated exposure of the fetus to cortisol can cause neurological complications with a lower intelligence quotient, higher odds of attention deficit and hyperactivity disorder as well as metabolic reprogramming with an increased risk of cardio-metabolic disease in adulthood. This chapter describes in vitro methods for the determination of 11ß-HSD2 activity that can be applied to identify inhibitors that may cause secondary hypertension and characterize the enzyme's activity in disease models. The included decision tree and the list of methods with their advantages and disadvantages aim to enable the reader to select and apply an in vitro method suitable for the scientific question and the equipment available in the respective laboratory.


Subject(s)
Hypertension , Mineralocorticoid Excess Syndrome, Apparent , Humans , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , Mineralocorticoids/metabolism , Hypertension/genetics , Hypertension/metabolism , Hydrocortisone
7.
Pathol Res Pract ; 251: 154873, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37820440

ABSTRACT

Glucocorticoids bind to glucocorticoid receptors (GR). In the peripheral tissues, active cortisol is produced from inactive cortisone by 11ß-hydroxysteroid dehydrogenase (HSD)1. 11ß-HSD2 is responsible for this reverse catalysis. Although GR and 11ß-HSDs have been reported to be involved in the malignant behavior of various cancer types, the concentration of glucocorticoids in cancer tissues has not been investigated. In this study, we measured glucocorticoids in serum and cancer tissues using liquid chromatography-tandem mass spectrometry and clarified, for the first time, the intratumoral "intracrine" production of cortisol by 11ß-HSD1/2 in endometrial cancer. Intratumoral cortisol levels were high in the high-malignancy type and the cancer proliferation marker Ki-67-high group, suggesting that cortisol greatly contributes to the malignant behavior of endometrial cancer. A low expression level of the metabolizing enzyme 11ß-HSD2 is more important than a high expression level of the synthase 11ß-HSD1 for intratumoral cortisol action. Intratumoral cortisol was positively related to the expression/activity of estrogen synthase aromatase, which involved GR expressed in fibroblastic stromal cells but not in cancer cells. Blockade of GR signaling by hormone therapy is expected to benefit patients with endometrial cancer.


Subject(s)
Endometrial Neoplasms , Hydrocortisone , Female , Humans , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Aromatase , Glucocorticoids , Hydrocortisone/metabolism , Receptors, Glucocorticoid/metabolism , Tumor Microenvironment
8.
J Steroid Biochem Mol Biol ; 234: 106396, 2023 11.
Article in English | MEDLINE | ID: mdl-37683773

ABSTRACT

Cholestane-3ß,5α,6ß-triol (CT) is a primary metabolite of 5,6-epoxycholesterols (5,6-EC) that is catalyzed by the cholesterol-5,6-epoxide hydrolase (ChEH). CT is a well-known biomarker for Niemann-Pick disease type C (NP-C), a progressive inherited neurodegenerative disease. On the other hand, CT is known to be metabolized by the 11ß-hydroxysteroid-dehydrogenase of type 2 (11ß-HSD2) into a tumor promoter named oncosterone that stimulates the growth of breast cancer tumors. Sulfation is a major metabolic transformation leading to the production of sulfated oxysterols. The production of cholestane-5α,6ß-diol-3ß-O-sulfate (CDS) has been reported in breast cancer cells. However, no data related to CDS biological properties have been reported so far. These studies have been hampered because sulfate esters of sterols and steroids are rapidly hydrolyzed by steroid sulfatase to give free steroids and sterols. In order to get insight into the biological properties of CDS, we report herein the synthesis and the characterization of cholestane-5α,6ß-diol-3ß-sulfonate (CDSN), a non-hydrolysable analogue of CDS. We show that CDSN is a potent inhibitor of 11ß-HSD2 that blocks oncosterone production on cell lysate. The inhibition of oncosterone biosynthesis of a whole cell assay was observed but results from the blockage by CDSN of the uptake of CT in MCF-7 cells. While CDSN inhibits MCF-7 cell proliferation, we found that it potentiates the cytotoxic activity of post-lanosterol cholesterol biosynthesis inhibitors such as tamoxifen and PBPE. This effect was associated with an increase of free sterols accumulation and the appearance of giant multilamellar bodies, a structural feature reminiscent of Type C Niemann-Pick disease cells and consistent with a possible inhibition by CDSN of NPC1. Altogether, our data showed that CDSN is biologically active and that it is a valuable tool to study the biological properties of CDS and more specifically its impact on immunity and viral infection.


Subject(s)
Breast Neoplasms , Neurodegenerative Diseases , Humans , Female , Sulfates , 11-beta-Hydroxysteroid Dehydrogenase Type 2 , Cholesterol/metabolism , Sterols
9.
Nutrients ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37432276

ABSTRACT

We previously reported that maternal fructose consumption increases blood corticosterone levels in rat offspring. However, the underlying mechanism of action remains unclear. In the present study, we aimed to elucidate the molecular mechanism by which maternal high-fructose corn syrup (HFCS) intake increases circulating GC levels in rat offspring (GC; corticosterone in rodents and cortisol in humans). Female Sprague Dawley rats received HFCS solution during gestation and lactation. The male offspring were fed distilled water from weaning to 60 days of age. We investigated the activities of GC-metabolizing enzymes (11ß-Hsd1 and 11ß-Hsd2) in various tissues (i.e., liver, kidney, adrenal glands, muscle, and white adipose tissue) and epigenetic modification. 11ß-Hsd2 activity decreased in the kidney of the HFCS-fed dams. Moreover, the epigenetic analysis suggested that miR-27a reduced Hsd11b2 mRNA expression in the kidney of offspring. Maternal HFCS-induced elevation of circulating GC levels in offspring may be explained by a decrease in 11ß-Hsd2 activity via renal miR-27a expression. The present study may allow us to determine one of the mechanisms of GC elevation in rat offspring that is often observed in the developmental origins of the health and disease (DOHaD) phenomenon.


Subject(s)
High Fructose Corn Syrup , MicroRNAs , Humans , Rats , Animals , Female , Male , Corticosterone , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , Rats, Sprague-Dawley , Zea mays , Kidney , Fructose/adverse effects , High Fructose Corn Syrup/adverse effects , MicroRNAs/genetics
10.
Molecules ; 28(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446556

ABSTRACT

Bisphenol A (BPA) analogues substituted on the benzene ring are widely used in a variety of industrial and consumer materials. However, their effects on the glucocorticoid-metabolizing enzyme 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) remain unclear. The inhibitory effects of 6 BPA analogues on the inhibition of human and rat 11ß-HSD1 were investigated. The potencies of inhibition on human 11ß-HSD1 were bisphenol H (IC50, 0.75 µM) > bisphenol G (IC50, 5.06 µM) > diallyl bisphenol A (IC50, 13.36 µM) > dimethyl bisphenol A (IC50, 30.18 µM) > bisphenol A dimethyl ether (IC50, 33.08 µM) > tetramethyl bisphenol A (>100 µM). The inhibitory strength of these chemicals on rat 11ß-HSD1 was much weaker than that on the human enzyme, ranging from 74.22 to 205.7 µM. All BPA analogues are mixed/competitive inhibitors of both human and rat enzymes. Molecular docking studies predict that bisphenol H and bisphenol G both bind to the active site of human 11ß-HSD1, forming a hydrogen bond with catalytic residue Ser170. The bivariate correlation of IC50 values with LogP (lipophilicity), molecular weight, heavy atoms, and molecular volume revealed a significant inverse regression and the correlation of IC50 values with ΔG (low binding energy) revealed a positive regression. In conclusion, the lipophilicity, molecular weight, heavy atoms, molecular volume, and binding affinity of a BPA analogue determine the inhibitory strength of human and rat 11ß-HSD isoforms.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1 , Benzhydryl Compounds , Humans , Rats , Animals , Molecular Docking Simulation , Benzhydryl Compounds/pharmacology , Phenols/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 2
11.
J Clin Endocrinol Metab ; 108(12): 3178-3189, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37339332

ABSTRACT

BACKGROUND: Patients with adrenal insufficiency (AI) require life-long glucocorticoid (GC) replacement therapy. Within tissues, cortisol (F) availability is under the control of the isozymes of 11ß-hydroxysteroid dehydrogenase (11ß-HSD). We hypothesize that corticosteroid metabolism is altered in patients with AI because of the nonphysiological pattern of current immediate release hydrocortisone (IR-HC) replacement therapy. The use of a once-daily dual-release hydrocortisone (DR-HC) preparation, (Plenadren®), offers a more physiological cortisol profile and may alter corticosteroid metabolism in vivo. STUDY DESIGN AND METHODS: Prospective crossover study assessing the impact of 12 weeks of DR-HC on systemic GC metabolism (urinary steroid metabolome profiling), cortisol activation in the liver (cortisone acetate challenge test), and subcutaneous adipose tissue (microdialysis, biopsy for gene expression analysis) in 51 patients with AI (primary and secondary) in comparison to IR-HC treatment and age- and BMI-matched controls. RESULTS: Patients with AI receiving IR-HC had a higher median 24-hour urinary excretion of cortisol compared with healthy controls (72.1 µg/24 hours [IQR 43.6-124.2] vs 51.9 µg/24 hours [35.5-72.3], P = .02), with lower global activity of 11ß-HSD2 and higher 5-alpha reductase activity. Following the switch from IR-HC to DR-HC therapy, there was a significant reduction in urinary cortisol and total GC metabolite excretion, which was most significant in the evening. There was an increase in 11ß-HSD2 activity. Hepatic 11ß-HSD1 activity was not significantly altered after switching to DR-HC, but there was a significant reduction in the expression and activity of 11ß-HSD1 in subcutaneous adipose tissue. CONCLUSION: Using comprehensive in vivo techniques, we have demonstrated abnormalities in corticosteroid metabolism in patients with primary and secondary AI receiving IR-HC. This dysregulation of pre-receptor glucocorticoid metabolism results in enhanced glucocorticoid activation in adipose tissue, which was ameliorated by treatment with DR-HC.


Subject(s)
Adrenal Insufficiency , Glucocorticoids , Humans , Glucocorticoids/therapeutic use , Glucocorticoids/metabolism , Hydrocortisone/metabolism , Prospective Studies , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Cross-Over Studies , Adrenal Cortex Hormones , Adrenal Insufficiency/drug therapy
12.
Clin Med Res ; 21(1): 6-13, 2023 03.
Article in English | MEDLINE | ID: mdl-37130784

ABSTRACT

Objective: The mineralocorticoid receptor (MR) has two ligands, aldosterone and cortisol. Hydroxysteroid 11-beta dehydrogenase (HSD11B) isoenzymes regulate which ligand will bind to MR. In this study we aimed to evaluate the expression of the MR and the HSD11B isozymes in peripheral polymorphonuclear cells (PMNs) in critical illness for a 13-day period.Design: Prospective studySetting: One multi-disciplinary intensive care unit (ICU)Participants: Forty-two critically ill patientsMethods: Messenger RNA (mRNA) expression of MR, HSD11B1, and HSD11B2, aldosterone levels, and plasma renin activity (PRA) were measured in 42 patients on ICU admission and on days 4, 8, and 13. Twenty-five age and sex-matched healthy subjects were used as controls.Results: Compared to healthy controls, MR expression in critically ill patients was lower during the entire study period. HSD11B1 expression was also lower, while HSD11B2 expression was higher. In patients, PRA, aldosterone, the aldosterone:renin ratio, and cortisol remained unaltered during the study period.Conclusion: Our results suggest that, in our cohort of critically ill patients, local endogenous cortisol availability is diminished, pointing towards glucocorticoid resistance. Aldosterone probably occupies the MR, raising the possibility that PMNs might be useful to study to gain insights into MR functionality during pathological states.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2 , Aldosterone , Receptors, Mineralocorticoid , Humans , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Critical Illness , Down-Regulation , Hydrocortisone/metabolism , Hydroxysteroids , Isoenzymes/genetics , Isoenzymes/metabolism , Prospective Studies , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Renin/genetics , Renin/metabolism , Up-Regulation
13.
Toxicology ; 488: 153484, 2023 04.
Article in English | MEDLINE | ID: mdl-36878351

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are persistent in the environment and may disrupt the endocrine system. Our previous study showed that perfluorooctanoic acid (PFOA, C8) and perfluorooctanesulfonic acid (PFOS, C8S) can inhibit 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2) activity leading to an active glucocorticoid accumulation. In this study, we extended investigation for 17 PFAS, including carboxylic and sulfonic acids, with different carbon-chain lengths, to determine their inhibitory potency and structure-activity relationship in human placental and rat renal 11ß-HSD2. C8-C14 PFAS at 100 µM significantly inhibited human 11ß-HSD2 with a potency as C10 (half-maximal inhibitory concentration, IC50, 9.19 µM) > C11 (15.09 µM) > C12 (18.43 µM) > C9 (20.93 µM) > C13 (124 µM) > C14 (147.3 µM) > other C4-C7 carboxylic acids, and C8S > C7S = C10S > other sulfonic acids. For rat 11ß-HSD2, only C9 and C10 and C7S and C8S PFAS exhibited significant inhibitory effects. PFAS are primarily mixed/competitive inhibitors of human 11ß-HSD2. Preincubation and simultaneous incubation with the reducing agent dithiothreitol significantly increased human 11ß-HSD2 but not rat 11ß-HSD2, and preincubation but not simultaneous incubation with dithiothreitol partially reversed C10-mediated inhibition on human 11ß-HSD2. Docking analysis showed that all PFAS bound to the steroid-binding site and carbon-chain length determined the potency of inhibition, with the optimal molecular length (12.6 Å) for potent inhibitors PFDA and PFOS, which is comparable to the molecular length (12.7 Å) of the substrate cortisol. The length between 8.9 and 17.2 Å is the probable threshold molecular length to inhibit human 11ß-HSD2. In conclusion, the carbon-chain length determines the inhibitory effect of PFAS on human and rat 11ß-HSD2, and the inhibitory potency of long-chain PFAS on human and rat 11ß-HSD2 showed V-shaped pattern. Long-chain PFAS may partially act on the cysteine residues of human 11ß-HSD2.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2 , Fluorocarbons , Animals , Female , Humans , Pregnancy , Rats , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , 11-beta-Hydroxysteroid Dehydrogenases/metabolism , Dithiothreitol , Fluorocarbons/toxicity , Placenta/metabolism , Structure-Activity Relationship
14.
Ecotoxicol Environ Saf ; 254: 114715, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36871355

ABSTRACT

Bisphenols (BPs) as endocrine-disrupting compounds have drawn attention to their health hazards. Whether a BP interferes with glucocorticoid metabolism remains unclear. 11ß-Hydroxysteroid dehydrogenase 2 (11ß-HSD2) is a key glucocorticoid-metabolizing enzyme that controls fetal glucocorticoid levels across the placental barrier and mineralocorticoid receptor specificity in the kidney. In this study, 11 BPs were tested to inhibit human placental and rat renal 11ß-HSD2 and were analyzed for inhibitory potency, mode action, and docking parameters. BPs had inhibitory potency against human 11ß-HSD2: BPFL>BPAP>BPZ>BPB>BPC>BPAF>BPA>TDP and the IC10 values were 0.21, 0.55, 1.04, 2.04, 2.43, 2.57, 14.43, and 22.18 µM, respectively. All BPs are mixed inhibitors except BPAP, which is a competitive inhibitor for human 11ß-HSD2. Some BPs also inhibited rat renal 11ß-HSD2, with BPB (IC50, 27.74 ± 0.95) > BPZ (42.14 ± 0.59) > BPAF (54.87 ± 1.73) > BPA (77.32 ± 1.20) > other BPs (about 100 µM). Docking analysis showed that all BPs bound to the steroid-binding site, interacting with the catalytic residue Tyr232 of both enzymes and the most potent human 11ß-HSD2 inhibitor BPFL acts possibly due to its large fluorene ring that has hydrophobic interaction with residues Glu172 and Val270 and π-stacking interaction with catalytic residue Tyr232. The increase in the size of substituted alkanes and halogenated groups in the methane moiety of the bridge of BPs increases its inhibitory potency. Regressions of the lowest binding energy with inhibition constant indicated that there was an inverse regression. These results indicated that BPs significantly inhibited human and rat 11ß-HSD2 activity and that there were species-dependent differences.


Subject(s)
Glucocorticoids , Placenta , Rats , Humans , Pregnancy , Female , Animals , Glucocorticoids/metabolism , 11-beta-Hydroxysteroid Dehydrogenases/metabolism , Placenta/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Structure-Activity Relationship
15.
BMC Pharmacol Toxicol ; 24(1): 20, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36978114

ABSTRACT

BACKGROUND: The anti-osteosarcoma effects of hydrocortisone and thiram, an inhibitor of type 2 11ß-hydroxysteroid dehydrogenase (11HSD2), have not been reported. The purpose of this study was to investigate the effects of hydrocortisone alone or the combination of hydrocortisone with thiram on osteosarcoma and the molecular mechanism, and determine whether they can be as new therapeutic agents for osteosarcoma. METHODS: Normal bone cells and osteosarcoma cells were treated with hydrocortisone or thiram alone or in combination. The cell proliferation, migration, cell cycle and apoptosis were detected by using CCK8 assay, wound healing assay, and flow cytometry, respectively. An osteosarcoma mouse model was established. The effect of drugs on osteosarcoma in vivo was assessed by measuring tumor volume. Transcriptome sequencing, bioinformatics analysis, RT-qPCR, Western blotting (WB), enzymelinked immunosorbent assay (ELISA) and siRNA transfection were performed to determine the molecular mechanisms. RESULTS: Hydrocortisone inhibited the proliferation and migration, and induced apoptosis and cell cycle arrest of osteosarcoma cells in vitro. Hydrocortisone also reduced the volume of osteosarcoma in mice in vivo. Mechanistically, hydrocortisone decreased the levels of Wnt/ß-catenin pathway-associated proteins, and induced the expression of glucocorticoid receptor α (GCR), CCAAT enhancer-binding protein ß (C/EBP-beta) and 11HSD2, resulting in a hydrocortisone resistance loop. Thiram inhibited the activity of the 11HSD2 enzyme, the combination of thiram and hydrocortisone further enhanced the inhibition of osteosarcoma through Wnt/ß-catenin pathway. CONCLUSIONS: Hydrocortisone inhibits osteosarcoma through the Wnt/ß-catenin pathway. Thiram inhibits 11HSD2 enzyme activity, reducing hydrocortisone inactivation and promoting the effect of hydrocortisone through the same pathway.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Mice , Apoptosis , beta Catenin/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Hydrocortisone/pharmacology , Hydrocortisone/therapeutic use , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism , Thiram/pharmacology , Thiram/therapeutic use , Wnt Proteins/metabolism , Wnt Proteins/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 2
16.
Food Chem Toxicol ; 175: 113739, 2023 May.
Article in English | MEDLINE | ID: mdl-36958388

ABSTRACT

Some halogenated bisphenol A (BPA) derivatives (tetrabromobisphenol A, TBBPA, and tetrachlorobisphenol A, TCBPA) are produced in a high volume and exist in PM2.5 after waste burning. 11ß-Hydroxysteroid dehydrogenase 2 (11ß-HSD2) is a critical enzyme for placental function. However, whether halogenated bisphenols inhibit 11ß-HSD2 and the mode of action remains unclear. The objective of this study was to investigate BPA derivatives on human and rat placental 11ß-HSD2. The inhibitory strength on human 11ß-HSD2 was TBBPA (IC50, 0.665 µM)>TCBPA (2.22 µM)>trichloro BPA (TrCBPA, 19.87 µM)>tetrabromobisphenol S (TBBPS, 36.76 µM)>monochloro BPA (MCBPA, 104.0 µM)>BPA (144.9 µM)>bisphenol S. All chemicals are mixed and competitive inhibitors. Rat 11ß-HSD2 was less sensitive to BPA derivatives, with TBBPA (IC50, 96.63 µM)>TCBPA (99.69 µM)>TrCBPA (104.1 µM)>BPA (117.1 µM)>others. Docking analysis showed that BPA derivatives bind steroid active sites. Structure-activity relationship revealed that halogen atoms and LogP were inversely correlated with inhibitory strength on human 11ß-HSD2, while LogS and polar desolvation energy were positively correlated with the inhibitory strength. In conclusion, halogenated BPA derivatives are mostly potent inhibitors on human 11ß-HSD2 and there is structure-dependent inhibition.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2 , Placenta , Humans , Rats , Female , Pregnancy , Animals , 11-beta-Hydroxysteroid Dehydrogenases , Placenta/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Benzhydryl Compounds/toxicity
17.
FASEB J ; 37(3): e22820, 2023 03.
Article in English | MEDLINE | ID: mdl-36801982

ABSTRACT

Epidemiological studies suggest that fetal growth restriction (FGR) caused by gestational cholestasis is associated with elevated serum cholic acid (CA). Here, we explore the mechanism by which CA induces FGR. Pregnant mice except controls were orally administered with CA daily from gestational day 13 (GD13) to GD17. Results found that CA exposure decreased fetal weight and crown-rump length, and increased the incidence of FGR in a dose-dependent manner. Furthermore, CA caused placental glucocorticoid (GC) barrier dysfunction via down-regulating the protein but not the mRNA level of placental 11ß-Hydroxysteroid dehydrogenase-2 (11ß-HSD2). Additionally, CA activated placental GCN2/eIF2α pathway. GCN2iB, an inhibitor of GCN2, significantly inhibited CA-induced down-regulation of 11ß-HSD2 protein. We further found that CA caused excessive reactive oxygen species (ROS) production and oxidative stress in mouse placentas and human trophoblasts. NAC significantly rescued CA-induced placental barrier dysfunction by inhibiting activation of GCN2/eIF2α pathway and subsequent down-regulation of 11ß-HSD2 protein in placental trophoblasts. Importantly, NAC rescued CA-induced FGR in mice. Overall, our results suggest that CA exposure during late pregnancy induces placental GC barrier dysfunction and subsequent FGR may be via ROS-mediated placental GCN2/eIF2α activation. This study provides valuable insight for understanding the mechanism of cholestasis-induced placental dysfunction and subsequent FGR.


Subject(s)
Placenta Diseases , Placenta , Pregnancy , Female , Mice , Humans , Animals , Placenta/metabolism , Reactive Oxygen Species/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , Fetal Growth Retardation/chemically induced , Eukaryotic Initiation Factor-2/metabolism , Placenta Diseases/metabolism
18.
Article in English | MEDLINE | ID: mdl-36754112

ABSTRACT

Glucocorticoids (GCs) are an essential mediator hormone that can regulate animal growth, behavior, the phenotype of offspring, and so on, while GCs in poultry are predominantly corticosterones. The biological activity of GCs is mainly regulated by the intracellular metabolic enzymes, including 11ß-hydroxysteroid dehydrogenases 1 (11ß-HSD1), 11ß-hydroxysteroid dehydrogenases 2 (11ß-HSD2), and 20-hydroxysteroid dehydrogenase (20-HSD). To investigate the embryonic mechanisms of phenotypic differences between breeds, we compared the expression of corticosterone metabolic enzyme genes in the yolk-sac membrane and chorioallantoic membrane (CAM). We described the tissue distribution and ontogenic patterns of corticosterone metabolic enzymes during embryonic incubation between Tibetan and broiler chickens. Forty fertilized eggs from Tibetan and broiler chickens were incubated under hypoxic and normoxic conditions, respectively. Real-time fluorescence quantitative PCR was used to examine the expression of 11ß-HSD1/2, and 20-HSD mRNA in embryonic tissues. The results showed that the expression levels of yolk-sac membrane mRNA of 11ß-HSD2 and 20-HSD in Tibetan chickens on E14 (embryonic day of 14) were significantly lower than those of broiler chickens (P < 0.05), and these genes expression of CAM in Tibetan chickens were higher than those of broiler chickens (P < 0.05). In addition, the three genes in the yolk-sac membrane and CAM were followed by a down-regulation on E18 (embryonic day of 18). The 11ß-HSD1 and 11ß-HSD2 genes followed a similar tissue-specific pattern: the expression level was more abundantly in the liver, kidney, and intestine, with relatively lower abundance in the hypothalamus and muscle, and the expression level of 20-HSD genes in all tissues tested was higher. In the liver, 20-HSD of both Tibetan and broiler chickens showed different ontogeny development patterns, and hepatic mRNA expression of 20-HSD in broiler chickens was significantly higher than that of Tibetan chickens of the same age from E14 to E18 (P < 0.05). This study preliminarily revealed the expression levels of cortisol metabolic genes in different tissues during the development process of Tibetan and broiler chicken embryos. It provided essential information for in-depth research of the internal mechanism of maternal GCs programming on offspring.


Subject(s)
Chickens , Corticosterone , Animals , Chick Embryo , Corticosterone/metabolism , Chickens/genetics , Chickens/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Tibet , Glucocorticoids/metabolism , Hydroxysteroid Dehydrogenases/genetics , Hydroxysteroid Dehydrogenases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression
19.
Pediatr Nephrol ; 38(6): 1717-1724, 2023 06.
Article in English | MEDLINE | ID: mdl-36322257

ABSTRACT

Since the 1970s, when the initial reports of neonatal hypertension related to renal artery thromboembolism were published, other secondary causes of neonatal hypertension have been reported. Those infants with no identifiable cause of hypertension were labeled with a variety of terms. Herein, we describe such infants as having idiopathic neonatal hypertension (INH). Most, but not all, of these hypertensive infants were noted to have bronchopulmonary dysplasia (BPD). More recently, reports described common clinical characteristics seen in INH patients, whether or not they had BPD. This phenotype includes low plasma renin activity, presentation near 40 weeks postmenstrual age, and a favorable response to treatment with spironolactone. A small prospective study in INH patents showed evidence of mineralocorticoid receptor activation due to inhibition of 11ß-HSD2, the enzyme that converts cortisol to the less potent mineralocorticoid-cortisone. Meanwhile, phthalate metabolites have been shown to inhibit 11ß-HSD2 in human microsomes. Premature infants can come in contact with exceptionally large phthalate exposures, especially those infants with BPD. This work describes a common low-renin phenotype, commonly seen in patients categorized as having INH. Further, we review the evidence that hypertension in INH patients with the low-renin phenotype may be mediated by phthalate-associated inhibition of 11ß-HSD2. Lastly, we review the implications of these findings regarding identification, treatment, and prevention of the low-renin hypertension phenotype seen in premature infants categorized as having INH.


Subject(s)
Hypertension , Renin , Infant, Newborn , Infant , Humans , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Prospective Studies , Hypertension/etiology , Essential Hypertension , Infant, Premature , Phenotype
20.
J Nat Med ; 77(1): 87-95, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36064835

ABSTRACT

Jujuboside B (JB) found in the seeds of Zizyphi Spinosi Semen possesses pharmacological functions, such as anti-inflammatory, antiplatelet aggregation, and antianxiety potentials. This study evaluated the effect of JB on liver failure in cecal ligation and puncture (CLP)-induced sepsis. First, we observed histopathological changes in the liver by optical microscopy and the activity of enzymes in serum such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). We further measured the levels of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, nitric oxide (NO), and antioxidative parameters in liver homogenate. The expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), and glucocorticoid receptor (GR) in the liver was observed by Western blotting. CLP enhanced the migration of inflammatory cells, ALT and AST concentrations, and necrosis, which were reduced by JB. In addition, JB reduced 11ß-HSD2 expression and levels of inflammatory mediators (TNF-α, IL-1ß, and NO) in the liver, increased GR expression, enhanced endogenous antioxidative capacity. These results further suggest that JB may protect the liver against CLP-induced damage by regulating anti-inflammatory responses, downregulating 11ß-HSD2 expression and antioxidation, and up-regulating GR expression.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2 , Saponins , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Glucocorticoids , Saponins/pharmacology , Tumor Necrosis Factor-alpha , Antioxidants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...